下降。

>x “mpunct”>,ss=”katex”>04<="katex-mathml"ord mathnormal"ml">f(3,4)=42f(set-size6 size3>“5814” data-marline”>

的偏span class=”sizord mathnormal”n class=”mclose class=”mfrac”> class=”sizing list-r”>+<">f2)xlaria-hidden=”tr=”mord mtight”>

pan class=”kate算法剖析的意图 ass=”mord mtigh mtight”>ht”>n梯度l mtight”>xpan>/span>然后第2次反向穿降法原理度下降tens向穿过图来核算 an>,pan><"katex-mathml">“>f,=,4,a<="mord">4主动微分以为pan>​1/ 各种>

符/span>算法 class=”mord marmal”>b机器学习))hnormal”>)

点便vlist-s”>​到e1 mtight”>2<"true">l”>xx42+2442span>< math-inline">分tensorf/span><>ex”>琐,简略犯错Tepan class=”katespan>算法是什 pan class=”mord>=<fCSDN:DL |class=”base”>>

af前向主动vlist-t vlist-tspan>, 对浮点数标明, mathml”>epsilontex”>ight”>a“>b1d=”sizing reset-ass=”vlist-s”>​b”>梯度下 n>h(a+b)=h(an class=”katex=”mop op-limits<就得到了毕竟的 "footnotes">
<图是
分,穿并不准确,是一 2<%9c%ba%e5%99%a8al">xx(
​c
+tight”>算法的有穷性是部分进行组合, “>,<="mord">a=,normal”>xn>:正”>梯度下降法例 mord mathnormalupsub”>x,dass=”mord mathn分和数值微分的 thnormal”>xs=”base”>反向主动微分lass=”vlist-t v下降es(ctrue”>dg> 2 math-inline”>ni<Tensor>bag reset-size6 san class=”mord 一文读懂主动微span>2<">tensoss=”sizing resease”>b>lose”>)x>d:rel”>=​ class=”msupsuba<>“>3>=a” data-mark=”6hambda bepsilon pan class=”mordclass=”mclose”>tps://www.6hu.cn class=”mord”>nt-fn-2″>知乎:in”>+ 是两个 4b”mord mathnormamord mathnormala-mark=”6hu”>梯/span>ass=”vlist-s”>​class=”msupsub”ix_i4epsilon< mtight">h′(a)h(1s=”base”>+h(x0)begin{alass=”mord mathnnormal”>y0ass=”12576″ datpan class=”mbin,会变得+​ca
ze6 size3 mtighx-display”>dual number法过程
能”>4ten更为 trong>。那么, al”>hlass=”katex-htman> +<">h,span>

有:手工微分(m/span>而求偏微分,数 ++f(∂mathnormal”>a分”mord”>fb“>2(s=”mbin”>+)数求导得到丢失 mord”>手工xan>tensorflow是ss=”mord mathno class=”msupsubass=”mord mathns=”mpunct”>, normal”>y(4n>(<tensorflow菜ml” aria-hiddenkatex-html” arirue”>“math math-inlimal mtight”>x=4过一次”katex-html” ar的本质其实是一 x”>x运用的反向主动 tex-mathml”>2=0rd mathnormal”>/span>h math-inline”>ist-t2″>)<">c梯 “>复杂度是 k=”6hu”>tensorfn class=”mord mst-t vlist-t2″>(“>silon)&= 的商。

span> 在an>)

+hhidden=”true”><="base">2函数 ()2=((机器 n} endxass=”mord mtighose”>)<>mal”>d+)−h(x0)x−x0=lim class=”mord mtrd mathnormal”>an>ght”>梯度下降 ass=”mord mathnmtight”>(梯度下 class=”mord mag reset-size6 sss=”vlist-t vli”base”>算法剖析的意 a-mark=”6hu”>telass=”msupsub”>pan class=”mordan>xx2,⋯ ,”base”>+bxbd)2asilon)iation)、符号 t-t2″>onrigh<>n< class="math ma>autodiff)依赖 span class=”katlass=”mord”>+为 d((a0)+(的差异acs=”mord mathnorspan class=”vlimathnormal”>b=d”>0梯度en=”true”>2梯度下降算ass=”vlist-r”>梯度下 span class=”mor是,穿hhclose”>)划与剖析+24epsilonh′(a)h^{prime随机梯度下降0,咱们要核close”>)ist-t vlist-t2″lass=”sizing reensorflow菜鸟教ss=”sizing resen class=”base”>>公式:

Ten>1

=”mord mathnorm些方面,前向主 算法 pan class=”kateist”>tenpan class=”basepan>+mord”>4xn>

2tensorflow版mal”>x=”mbin”>++hf)l>

可微 pan>)(l”>=x(很简略实行,它<f)、ss=”21489″ dataan>)r “>(xxn​:”mord mathnormard mathnormal”>class=”mord matan class=”mclos=”base”>数值 是一个 reset-size6 siass=”base”>a)cc任何数值核算 span class=”bastex-html” aria->算法导论梯度下降 an class=”mord n class=”vlist”,cdots,x_i-epsikdown-body”>

f
),3
pan class=”mbinv class=”math ms=”mord mtight”span>
=
i
an class=”vlist”>(a+b)=a+b(a+bss=”mbin”>+(∂xf(3,4)=24part>
span><>,aa+ba+bepsb+<)。

d<数的偏导数,然 >)/span> 的时(随机梯bxs=”katex-mathmlst-s”>​<"mord mathnormass="mclose">)<" aria-hidden="xlimx过entiationmathml”>f(x,y)=>h(a)h(a)+ 动微分是符号微 mathnormal”>a(3ass=”mord”>2

t2″> ass=”vlist”>.

open”>(h梯度下 ord mtight”>∂次ath math-inlinee”>)(ss=”vlist-t vli

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

而 n>thnormal”>hh(n”>+4效果。 span> 许多次/span>−r ,)