前言

冒个泡,年少无知吹完的牛皮是要还的呀。 那么这里的话要做的一个东西就是一个人体的姿态判断,比如一个人是坐着还是站着还是摔倒了,如果摔倒了我们要做什么操作,之类的。

不过这里比较可惜的就是这个midiapipe 它里面的Pose的话是只有一个pose的也就是单目标的一个检测,所以距离我想要的一个效果是很难受的,不过这个dome还是挺好玩的。

实现效果如下:

MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)

Midiapipe关键点检测

这个dome的核心之一,就是这个检测到人体的一个关键点,

MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)

import time
from collections import deque
import cv2
import numpy as np
import mediapipe as mp
from stgcn.stgcn import STGCN
from PIL import Image, ImageDraw, ImageFont
# 人体关键点检测模块
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
# 人脸模块
mpFace = mp.solutions.face_detection
faceDetection = mpFace.FaceDetection(min_detection_confidence=0.5)
KEY_JOINTS = [
    mp_pose.PoseLandmark.NOSE,
    mp_pose.PoseLandmark.LEFT_SHOULDER,
    mp_pose.PoseLandmark.RIGHT_SHOULDER,
    mp_pose.PoseLandmark.LEFT_ELBOW,
    mp_pose.PoseLandmark.RIGHT_ELBOW,
    mp_pose.PoseLandmark.LEFT_WRIST,
    mp_pose.PoseLandmark.RIGHT_WRIST,
    mp_pose.PoseLandmark.LEFT_HIP,
    mp_pose.PoseLandmark.RIGHT_HIP,
    mp_pose.PoseLandmark.LEFT_KNEE,
    mp_pose.PoseLandmark.RIGHT_KNEE,
    mp_pose.PoseLandmark.LEFT_ANKLE,
    mp_pose.PoseLandmark.RIGHT_ANKLE
]
POSE_CONNECTIONS = [(6, 4), (4, 2), (2, 13), (13, 1), (5, 3), (3, 1), (12, 10),
                    (10, 8), (8, 2), (11, 9), (9, 7), (7, 1), (13, 0)]
POINT_COLORS = [(0, 255, 255), (0, 191, 255), (0, 255, 102), (0, 77, 255), (0, 255, 0),  # Nose, LEye, REye, LEar, REar
                (77, 255, 255), (77, 255, 204), (77, 204, 255), (191, 255, 77), (77, 191, 255), (191, 255, 77),  # LShoulder, RShoulder, LElbow, RElbow, LWrist, RWrist
                (204, 77, 255), (77, 255, 204), (191, 77, 255), (77, 255, 191), (127, 77, 255), (77, 255, 127), (0, 255, 255)]  # LHip, RHip, LKnee, Rknee, LAnkle, RAnkle, Neck
LINE_COLORS = [(0, 215, 255), (0, 255, 204), (0, 134, 255), (0, 255, 50), (77, 255, 222),
               (77, 196, 255), (77, 135, 255), (191, 255, 77), (77, 255, 77), (77, 222, 255),
               (255, 156, 127), (0, 127, 255), (255, 127, 77), (0, 77, 255), (255, 77, 36)]
POSE_MAPPING = ["站着","走着","坐着","躺下","站起来","坐下","摔倒"]
POSE_MAPPING_COLOR = [
    (255,255,240),(	245,222,179),(244,164,96),(	210,180,140),
    (255,127,80),(255,165,79),(	255,48,48)
]
# 为了检测动作的准确度,每30帧进行一次检测
ACTION_MODEL_MAX_FRAMES = 30
class FallDetection:
    def __init__(self):
        self.action_model = STGCN(weight_file='./weights/tsstg-model.pth', device='cpu')
        self.joints_list = deque(maxlen=ACTION_MODEL_MAX_FRAMES)
    def draw_skeleton(self, frame, pts):
        l_pair = POSE_CONNECTIONS
        p_color = POINT_COLORS
        line_color = LINE_COLORS
        part_line = {}
        pts = np.concatenate((pts, np.expand_dims((pts[1, :] + pts[2, :]) / 2, 0)), axis=0)
        for n in range(pts.shape[0]):
            if pts[n, 2] <= 0.05:
                continue
            cor_x, cor_y = int(pts[n, 0]), int(pts[n, 1])
            part_line[n] = (cor_x, cor_y)
            cv2.circle(frame, (cor_x, cor_y), 3, p_color[n], -1)
            # cv2.putText(frame, str(n), (cor_x+10, cor_y+10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 1)
        for i, (start_p, end_p) in enumerate(l_pair):
            if start_p in part_line and end_p in part_line:
                start_xy = part_line[start_p]
                end_xy = part_line[end_p]
                cv2.line(frame, start_xy, end_xy, line_color[i], int(1*(pts[start_p, 2] + pts[end_p, 2]) + 3))
        return frame
    def cv2_add_chinese_text(self, img, text, position, textColor=(0, 255, 0), textSize=30):
        if (isinstance(img, np.ndarray)):  # 判断是否OpenCV图片类型
            img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
        # 创建一个可以在给定图像上绘图的对象
        draw = ImageDraw.Draw(img)
        # 字体的格式,opencv不支持中文,需要指定字体
        fontStyle = ImageFont.truetype(
            "./fonts/MSYH.ttc", textSize, encoding="utf-8")
        draw.text(position, text, textColor, font=fontStyle)
        return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
    def detect(self):
        cap = cv2.VideoCapture(0)
        # cap.set(3, 540)
        # cap.set(4, 960)
        # cap.set(5,30)
        image_h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
        image_w = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
        frame_num = 0
        print(image_h, image_w)
        with mp_pose.Pose(
                min_detection_confidence=0.7,
                min_tracking_confidence=0.5) as pose:
            while cap.isOpened():
                fps_time = time.time()
                frame_num += 1
                success, image = cap.read()
                if not success:
                    print("Ignoring empty camera frame.")
                    continue
                # 提高性能,这里是做那个姿态的一个推理
                image.flags.writeable = False
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
                results = pose.process(image)
                if results.pose_landmarks:
                    # 识别骨骼点
                    image.flags.writeable = True
                    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
                    landmarks = results.pose_landmarks.landmark
                    joints = np.array([[landmarks[joint].x * image_w,
                                        landmarks[joint].y * image_h,
                                        landmarks[joint].visibility]
                                       for joint in KEY_JOINTS])
                    # 人体框
                    box_l, box_r = int(joints[:, 0].min())-50, int(joints[:, 0].max())+50
                    box_t, box_b = int(joints[:, 1].min())-100, int(joints[:, 1].max())+100
                    self.joints_list.append(joints)
                    # 识别动作
                    action = ''
                    clr = (0, 255, 0)
                    # 30帧数据预测动作类型
                    if len(self.joints_list) == ACTION_MODEL_MAX_FRAMES:
                        pts = np.array(self.joints_list, dtype=np.float32)
                        out = self.action_model.predict(pts, (image_w, image_h))
                        #
                        index = out[0].argmax()
                        action_name = POSE_MAPPING[index]
                        cls = POSE_MAPPING_COLOR[index]
                        action = '{}: {:.2f}%'.format(action_name, out[0].max() * 100)
                        print(action)
                    # 绘制骨骼点和动作类别
                    image = self.draw_skeleton(image, self.joints_list[-1])
                    image = cv2.rectangle(image, (box_l, box_t), (box_r, box_b), (255, 0, 0), 1)
                    image = self.cv2_add_chinese_text(image, f'当前状态:{action}', (box_l + 10, box_t + 10), clr, 40)
                else:
                    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
                image = cv2.putText(image, f'FPS: {int(1.0 / (time.time() - fps_time))}',
                                    (50, 50), cv2.FONT_HERSHEY_PLAIN, 3, (0, 255, 0), 2)
                cv2.imshow('Pose', image)
                if cv2.waitKey(1) & 0xFF == ord("q"):
                    break
        cap.release()
        cv2.destroyAllWindows()
if __name__ == '__main__':
    FallDetection().detect()

stgcn 姿态评估

首先的话,他这个时空图神经网络,我是没有研究过的,这玩意就是啥呢,就是把pose传入然后一通运算,然后就可以得到一个动作以及所属类别,也就是说这玩意是一个分类的图网络。这部分的话我不是很熟悉,这是我的盲区,所以我这里就把这个当作黑盒处理了。那么同样的这部分代码也是直接在Github上面cv过来,然后集成到这个项目里面。

是的,算法的运用开发和我们正常的开发其实区别不大,重新训练任务只是调参,适当调整网络模型,以及训练数据即可,颠覆性的改动=重新设计算法。

MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)

这部分代码并不多,我就直接贴出来了:

按顺序从上到下


import torch
import torch.nn as nn
import torch.nn.functional as F
from stgcn.Utils import Graph
class GraphConvolution(nn.Module):
    """The basic module for applying a graph convolution.
    Args:
        - in_channel: (int) Number of channels in the input sequence data.
        - out_channels: (int) Number of channels produced by the convolution.
        - kernel_size: (int) Size of the graph convolving kernel.
        - t_kernel_size: (int) Size of the temporal convolving kernel.
        - t_stride: (int, optional) Stride of the temporal convolution. Default: 1
        - t_padding: (int, optional) Temporal zero-padding added to both sides of
            the input. Default: 0
        - t_dilation: (int, optional) Spacing between temporal kernel elements. Default: 1
        - bias: (bool, optional) If `True`, adds a learnable bias to the output.
            Default: `True`
    Shape:
        - Inputs x: Graph sequence in :math:`(N, in_channels, T_{in}, V)`,
                 A: Graph adjacency matrix in :math:`(K, V, V)`,
        - Output: Graph sequence out in :math:`(N, out_channels, T_{out}, V)`
            where
                :math:`N` is a batch size,
                :math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]`,
                :math:`T_{in}/T_{out}` is a length of input/output sequence,
                :math:`V` is the number of graph nodes.
    """
    def __init__(self, in_channels, out_channels, kernel_size,
                 t_kernel_size=1,
                 t_stride=1,
                 t_padding=0,
                 t_dilation=1,
                 bias=True):
        super().__init__()
        self.kernel_size = kernel_size
        self.conv = nn.Conv2d(in_channels,
                              out_channels * kernel_size,
                              kernel_size=(t_kernel_size, 1),
                              padding=(t_padding, 0),
                              stride=(t_stride, 1),
                              dilation=(t_dilation, 1),
                              bias=bias)
    def forward(self, x, A):
        x = self.conv(x)
        n, kc, t, v = x.size()
        x = x.view(n, self.kernel_size, kc//self.kernel_size, t, v)
        x = torch.einsum('nkctv,kvw->nctw', (x, A))
        return x.contiguous()
class st_gcn(nn.Module):
    """Applies a spatial temporal graph convolution over an input graph sequence.
    Args:
        - in_channels: (int) Number of channels in the input sequence data.
        - out_channels: (int) Number of channels produced by the convolution.
        - kernel_size: (tuple) Size of the temporal convolving kernel and
            graph convolving kernel.
        - stride: (int, optional) Stride of the temporal convolution. Default: 1
        - dropout: (int, optional) Dropout rate of the final output. Default: 0
        - residual: (bool, optional) If `True`, applies a residual mechanism.
            Default: `True`
    Shape:
        - Inputs x: Graph sequence in :math: `(N, in_channels, T_{in}, V)`,
                 A: Graph Adjecency matrix in :math: `(K, V, V)`,
        - Output: Graph sequence out in :math: `(N, out_channels, T_{out}, V)`
            where
                :math:`N` is a batch size,
                :math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]`,
                :math:`T_{in}/T_{out}` is a length of input/output sequence,
                :math:`V` is the number of graph nodes.
    """
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1,
                 dropout=0,
                 residual=True):
        super().__init__()
        assert len(kernel_size) == 2
        assert kernel_size[0] % 2 == 1
        padding = ((kernel_size[0] - 1) // 2, 0)
        self.gcn = GraphConvolution(in_channels, out_channels, kernel_size[1])
        self.tcn = nn.Sequential(nn.BatchNorm2d(out_channels),
                                 nn.ReLU(inplace=True),
                                 nn.Conv2d(out_channels,
                                           out_channels,
                                           (kernel_size[0], 1),
                                           (stride, 1),
                                           padding),
                                 nn.BatchNorm2d(out_channels),
                                 nn.Dropout(dropout, inplace=True)
                                 )
        if not residual:
            self.residual = lambda x: 0
        elif (in_channels == out_channels) and (stride == 1):
            self.residual = lambda x: x
        else:
            self.residual = nn.Sequential(nn.Conv2d(in_channels,
                                                    out_channels,
                                                    kernel_size=1,
                                                    stride=(stride, 1)),
                                          nn.BatchNorm2d(out_channels)
                                          )
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x, A):
        res = self.residual(x)
        x = self.gcn(x, A)
        x = self.tcn(x) + res
        return self.relu(x)
class StreamSpatialTemporalGraph(nn.Module):
    """Spatial temporal graph convolutional networks.
    Args:
        - in_channels: (int) Number of input channels.
        - graph_args: (dict) Args map of `Actionsrecognition.Utils.Graph` Class.
        - num_class: (int) Number of class outputs. If `None` return pooling features of
            the last st-gcn layer instead.
        - edge_importance_weighting: (bool) If `True`, adds a learnable importance
            weighting to the edges of the graph.
        - **kwargs: (optional) Other parameters for graph convolution units.
    Shape:
        - Input: :math:`(N, in_channels, T_{in}, V_{in})`
        - Output: :math:`(N, num_class)` where
            :math:`N` is a batch size,
            :math:`T_{in}` is a length of input sequence,
            :math:`V_{in}` is the number of graph nodes,
        or If num_class is `None`: `(N, out_channels)`
            :math:`out_channels` is number of out_channels of the last layer.
    """
    def __init__(self, in_channels, graph_args, num_class=None,
                 edge_importance_weighting=True, **kwargs):
        super().__init__()
        # Load graph.
        graph = Graph(**graph_args)
        A = torch.tensor(graph.A, dtype=torch.float32, requires_grad=False)
        self.register_buffer('A', A)
        # Networks.
        spatial_kernel_size = A.size(0)
        temporal_kernel_size = 9
        kernel_size = (temporal_kernel_size, spatial_kernel_size)
        kwargs0 = {k: v for k, v in kwargs.items() if k != 'dropout'}
        self.data_bn = nn.BatchNorm1d(in_channels * A.size(1))
        self.st_gcn_networks = nn.ModuleList((
            st_gcn(in_channels, 64, kernel_size, 1, residual=False, **kwargs0),
            st_gcn(64, 64, kernel_size, 1, **kwargs),
            st_gcn(64, 64, kernel_size, 1, **kwargs),
            st_gcn(64, 64, kernel_size, 1, **kwargs),
            st_gcn(64, 128, kernel_size, 2, **kwargs),
            st_gcn(128, 128, kernel_size, 1, **kwargs),
            st_gcn(128, 128, kernel_size, 1, **kwargs),
            st_gcn(128, 256, kernel_size, 2, **kwargs),
            st_gcn(256, 256, kernel_size, 1, **kwargs),
            st_gcn(256, 256, kernel_size, 1, **kwargs)
        ))
        # initialize parameters for edge importance weighting.
        if edge_importance_weighting:
            self.edge_importance = nn.ParameterList([
                nn.Parameter(torch.ones(A.size()))
                for i in self.st_gcn_networks
            ])
        else:
            self.edge_importance = [1] * len(self.st_gcn_networks)
        if num_class is not None:
            self.cls = nn.Conv2d(256, num_class, kernel_size=1)
        else:
            self.cls = lambda x: x
    def forward(self, x):
        # data normalization.
        N, C, T, V = x.size()
        x = x.permute(0, 3, 1, 2).contiguous()  # (N, V, C, T)
        x = x.view(N, V * C, T)
        x = self.data_bn(x)
        x = x.view(N, V, C, T)
        x = x.permute(0, 2, 3, 1).contiguous()
        x = x.view(N, C, T, V)
        # forward.
        for gcn, importance in zip(self.st_gcn_networks, self.edge_importance):
            x = gcn(x, self.A * importance)
        x = F.avg_pool2d(x, x.size()[2:])
        x = self.cls(x)
        x = x.view(x.size(0), -1)
        return x
class TwoStreamSpatialTemporalGraph(nn.Module):
    """Two inputs spatial temporal graph convolutional networks.
    Args:
        - graph_args: (dict) Args map of `Actionsrecognition.Utils.Graph` Class.
        - num_class: (int) Number of class outputs.
        - edge_importance_weighting: (bool) If `True`, adds a learnable importance
            weighting to the edges of the graph.
        - **kwargs: (optional) Other parameters for graph convolution units.
    Shape:
        - Input: :tuple of math:`((N, 3, T, V), (N, 2, T, V))`
        for points and motions stream where.
            :math:`N` is a batch size,
            :math:`in_channels` is data channels (3 is (x, y, score)), (2 is (mot_x, mot_y))
            :math:`T` is a length of input sequence,
            :math:`V` is the number of graph nodes,
        - Output: :math:`(N, num_class)`
    """
    def __init__(self, graph_args, num_class, edge_importance_weighting=True,
                 **kwargs):
        super().__init__()
        self.pts_stream = StreamSpatialTemporalGraph(3, graph_args, None,
                                                     edge_importance_weighting,
                                                     **kwargs)
        self.mot_stream = StreamSpatialTemporalGraph(2, graph_args, None,
                                                     edge_importance_weighting,
                                                     **kwargs)
        self.fcn = nn.Linear(256 * 2, num_class)
    def forward(self, inputs):
        out1 = self.pts_stream(inputs[0])
        out2 = self.mot_stream(inputs[1])
        concat = torch.cat([out1, out2], dim=-1)
        out = self.fcn(concat)
        return torch.sigmoid(out)

import torch
import numpy as np
from .Models import TwoStreamSpatialTemporalGraph
from .Utils import normalize_points_with_size, scale_pose
class STGCN(object):
    """Two-Stream Spatial Temporal Graph Model Loader.
    Args:
        weight_file: (str) Path to trained weights file.
        device: (str) Device to load the model on 'cpu' or 'cuda'.
    """
    def __init__(self,
                 weight_file='./Models/TSSTG/tsstg-model.pth',
                 device='cuda'):
        self.graph_args = {'strategy': 'spatial'}
        self.class_names = ['Standing', 'Walking', 'Sitting', 'Lying Down',
                            'Stand up', 'Sit down', 'Fall Down']
        self.num_class = len(self.class_names)
        self.device = device
        self.model = TwoStreamSpatialTemporalGraph(self.graph_args, self.num_class).to(self.device)
        self.model.load_state_dict(torch.load(weight_file,  map_location=torch.device(device)))
        self.model.eval()
    def predict(self, pts, image_size):
        """Predict actions from single person skeleton points and score in time sequence.
        Args:
            pts: (numpy array) points and score in shape `(t, v, c)` where
                t : inputs sequence (time steps).,
                v : number of graph node (body parts).,
                c : channel (x, y, score).,
            image_size: (tuple of int) width, height of image frame.
        Returns:
            (numpy array) Probability of each class actions.
        """
        pts[:, :, :2] = normalize_points_with_size(pts[:, :, :2], image_size[0], image_size[1])
        pts[:, :, :2] = scale_pose(pts[:, :, :2])
        pts = np.concatenate((pts, np.expand_dims((pts[:, 1, :] + pts[:, 2, :]) / 2, 1)), axis=1)
        pts = torch.tensor(pts, dtype=torch.float32)
        pts = pts.permute(2, 0, 1)[None, :]
        mot = pts[:, :2, 1:, :] - pts[:, :2, :-1, :]
        mot = mot.to(self.device)
        pts = pts.to(self.device)
        out = self.model((pts, mot))
        return out.detach().cpu().numpy()
### Reference from: https://github.com/yysijie/st-gcn/blob/master/net/utils/graph.py
import os
import torch
import numpy as np
class Graph:
    """The Graph to model the skeletons extracted by the Alpha-Pose.
    Args:
        - strategy: (string) must be one of the follow candidates
            - uniform: Uniform Labeling,
            - distance: Distance Partitioning,
            - spatial: Spatial Configuration,
        For more information, please refer to the section 'Partition Strategies'
            in our paper (https://arxiv.org/abs/1801.07455).
        - layout: (string) must be one of the follow candidates
            - coco_cut: Is COCO format but cut 4 joints (L-R ears, L-R eyes) out.
        - max_hop: (int) the maximal distance between two connected nodes.
        - dilation: (int) controls the spacing between the kernel points.
    """
    def __init__(self,
                 layout='coco_cut',
                 strategy='uniform',
                 max_hop=1,
                 dilation=1):
        self.max_hop = max_hop
        self.dilation = dilation
        self.get_edge(layout)
        self.hop_dis = get_hop_distance(self.num_node, self.edge, max_hop)
        self.get_adjacency(strategy)
    def get_edge(self, layout):
        if layout == 'coco_cut':
            self.num_node = 14
            self_link = [(i, i) for i in range(self.num_node)]
            neighbor_link = [(6, 4), (4, 2), (2, 13), (13, 1), (5, 3), (3, 1), (12, 10),
                             (10, 8), (8, 2), (11, 9), (9, 7), (7, 1), (13, 0)]
            self.edge = self_link + neighbor_link
            self.center = 13
        else:
            raise ValueError('This layout is not supported!')
    def get_adjacency(self, strategy):
        valid_hop = range(0, self.max_hop + 1, self.dilation)
        adjacency = np.zeros((self.num_node, self.num_node))
        for hop in valid_hop:
            adjacency[self.hop_dis == hop] = 1
        normalize_adjacency = normalize_digraph(adjacency)
        if strategy == 'uniform':
            A = np.zeros((1, self.num_node, self.num_node))
            A[0] = normalize_adjacency
            self.A = A
        elif strategy == 'distance':
            A = np.zeros((len(valid_hop), self.num_node, self.num_node))
            for i, hop in enumerate(valid_hop):
                A[i][self.hop_dis == hop] = normalize_adjacency[self.hop_dis ==
                                                                hop]
            self.A = A
        elif strategy == 'spatial':
            A = []
            for hop in valid_hop:
                a_root = np.zeros((self.num_node, self.num_node))
                a_close = np.zeros((self.num_node, self.num_node))
                a_further = np.zeros((self.num_node, self.num_node))
                for i in range(self.num_node):
                    for j in range(self.num_node):
                        if self.hop_dis[j, i] == hop:
                            if self.hop_dis[j, self.center] == self.hop_dis[i, self.center]:
                                a_root[j, i] = normalize_adjacency[j, i]
                            elif self.hop_dis[j, self.center] > self.hop_dis[i, self.center]:
                                a_close[j, i] = normalize_adjacency[j, i]
                            else:
                                a_further[j, i] = normalize_adjacency[j, i]
                if hop == 0:
                    A.append(a_root)
                else:
                    A.append(a_root + a_close)
                    A.append(a_further)
            A = np.stack(A)
            self.A = A
            #self.A = np.swapaxes(np.swapaxes(A, 0, 1), 1, 2)
        else:
            raise ValueError("This strategy is not supported!")
def get_hop_distance(num_node, edge, max_hop=1):
    A = np.zeros((num_node, num_node))
    for i, j in edge:
        A[j, i] = 1
        A[i, j] = 1
    # compute hop steps
    hop_dis = np.zeros((num_node, num_node)) + np.inf
    transfer_mat = [np.linalg.matrix_power(A, d) for d in range(max_hop + 1)]
    arrive_mat = (np.stack(transfer_mat) > 0)
    for d in range(max_hop, -1, -1):
        hop_dis[arrive_mat[d]] = d
    return hop_dis
def normalize_digraph(A):
    Dl = np.sum(A, 0)
    num_node = A.shape[0]
    Dn = np.zeros((num_node, num_node))
    for i in range(num_node):
        if Dl[i] > 0:
            Dn[i, i] = Dl[i]**(-1)
    AD = np.dot(A, Dn)
    return AD
def normalize_undigraph(A):
    Dl = np.sum(A, 0)
    num_node = A.shape[0]
    Dn = np.zeros((num_node, num_node))
    for i in range(num_node):
        if Dl[i] > 0:
            Dn[i, i] = Dl[i]**(-0.5)
    DAD = np.dot(np.dot(Dn, A), Dn)
    return DAD
def normalize_points_with_size(xy, width, height, flip=False):
    """Normalize scale points in image with size of image to (0-1).
    xy : (frames, parts, xy) or (parts, xy)
    """
    if xy.ndim == 2:
        xy = np.expand_dims(xy, 0)
    print(xy[:, :, 1].min(), xy[:, :, 1].max())
    xy[:, :, 0] /= width
    xy[:, :, 1] /= height
    print('preprocess')
    print(xy[:, :, 0].min(), xy[:, :, 0].max())
    print(xy[:, :, 1].min(), xy[:, :, 1].max())
    if flip:
        xy[:, :, 0] = 1 - xy[:, :, 0]
    return xy
def scale_pose(xy):
    """Normalize pose points by scale with max/min value of each pose.
    xy : (frames, parts, xy) or (parts, xy)
    """
    if xy.ndim == 2:
        xy = np.expand_dims(xy, 0)
    xy_min = np.nanmin(xy, axis=1)
    xy_max = np.nanmax(xy, axis=1)
    for i in range(xy.shape[0]):
        xy[i] = ((xy[i] - xy_min[i]) / (xy_max[i] - xy_min[i])) * 2 - 1
    return xy.squeeze()

MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)
这里还有一个权重,这个是人家官方那里下载的哈。 此外这里还有个字体:
MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)
然后就没有了。

效果

最后的话,就可以看到这样的一个效果了:

MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)
这里的话帧数还是比较低的,因为是纯cpu跑的,不过综合效果来看,当每满30帧时,它去判断姿态其实不会由明显卡顿,可能帧数会下降一些,但是就几帧。

当然局限很明显,就是不适合多目标的检测,还是单目标的。