1. 背景介绍

在实时视频修正领域,头发变色、修正发型是很盛行和受欢迎的场景。这种功用除了音视频相关的技术,还离不开AI能力的支持。而且这种场景自身对实时性要求高,很适合在端侧应用落地。上一篇文章咱们根据谷歌的MediaPipe项目完成了本地实时人脸检测功用,本文咱们再来一步一步跑通端侧实时染色功用。下面是作用:

AI视觉实战2:实时头发染色

2. 需求分析

上一篇中,人脸检测输入是一帧帧图片,输出是识别到的人脸数量,坐标及对应得分列表,咱们能够经过得分与设置的阈值比较判断是否有人脸,还能够根据回来的坐标,给人脸标一个方框。

实时头发染色功用输入的仍然是一帧帧图片,由于头发自身是不规则的,假如输出坐标的话很难再去制作,所以这次模型为咱们回来了一个完整的图片内容,图片上是变色的头发的内容,并且和原图片头发方位坐标坚持一直,这样咱们能够先制作原图画,再制作变色的染色头发图片。

3. 代码完成

和上一篇类似,运行模型一般咱们有以下几个步骤:

  1. 加载模型;
  2. 摄像头预览纹路转换为RGBA
  3. 将图画数据feed到模型引擎进行推理
  4. 解析烘托结果

3.1 加载模型

hair_segmentation模型加载时tflite::ops::builtin::BuiltinOpResolver新增了三个自定义operations:

tflite::ops::builtin::BuiltinOpResolver  resolver;
resolver.AddCustom("MaxPoolingWithArgmax2D",
            mediapipe::tflite_operations::RegisterMaxPoolingWithArgmax2D());
resolver.AddCustom("MaxUnpooling2D",
            mediapipe::tflite_operations::RegisterMaxUnpooling2D());
resolver.AddCustom("Convolution2DTransposeBias",
            mediapipe::tflite_operations::RegisterConvolution2DTransposeBias());

对应完成函数:

TfLiteRegistration* RegisterMaxPoolingWithArgmax2D() {
  static TfLiteRegistration reg = {
      [](TfLiteContext*, const char*, size_t) -> void* {
        return new TfLitePaddingValues();
      },
      [](TfLiteContext*, void* buffer) -> void {
        delete reinterpret_cast<TfLitePaddingValues*>(buffer);
      },
      Prepare, Eval};
  return 
}
TfLiteRegistration* RegisterMaxUnpooling2D() {
  static TfLiteRegistration reg = {
      [](TfLiteContext*, const char*, size_t) -> void* {
        return new TfLitePaddingValues();
      },
      [](TfLiteContext*, void* buffer) -> void {
        delete reinterpret_cast<TfLitePaddingValues*>(buffer);
      },
      Prepare, Eval};
  return 
}
TfLiteRegistration* RegisterConvolution2DTransposeBias() {
  static TfLiteRegistration reg = {nullptr, nullptr, Prepare, Eval};
  return 
}

经过InterpreterBuilder创建履行器std::unique_ptr<tflite::Interpreter>后,获取模型输入输出函数:

static tflite_tensor_t      s_tensor_input;
static tflite_tensor_t      s_tensor_segment;
tflite_get_tensor_by_name (&s_interpreter, 0, "input_1",  &s_tensor_input);
tflite_get_tensor_by_name (&s_interpreter, 1, "conv2d_transpose_4",  &s_tensor_segment);

tflite_tensor_t结构有ptr指针成员,输入时存放图画信息,输出时存放被烘托过的头发的图画信息。

3.2 摄像头预览纹路转换为RGBA

纹路转RGBA跟上一篇人脸检测一样,不在赘述。

3.3 将图画数据feed到模型引擎进行推理

feed数据到模型跟上一篇人脸检测一样,不在赘述。feed完后开端履行推理:

typedef struct _segmentation_result_t
{
    float *segmentmap;
    int   segmentmap_dims[3];
} segmentation_result_t;
int invoke_segmentation (segmentation_result_t *segment_result)
{
    if (interpreter->Invoke() != kTfLiteOk)
    {
        DBG_LOGE ("ERR: %s(%d)\n", __FILE__, __LINE__);
        return -1;
    }
    segment_result->segmentmap         = (float *)s_tensor_segment.ptr;
    segment_result->segmentmap_dims[0] = s_tensor_segment.dims[2];
    segment_result->segmentmap_dims[1] = s_tensor_segment.dims[1];
    segment_result->segmentmap_dims[2] = s_tensor_segment.dims[3];
    return 0;
}

结果首要包含被染发的图画数据。

3.4 解析烘托结果

制作时先制作原始图画纹路,然后制作模型回来的修正后的数据:

void render_segment_result (int ofstx, int ofsty, int draw_w, int draw_h,
                       texture_2d_t *srctex, segmentation_result_t *segment_ret)
{
    float *segmap = segment_ret->segmentmap;
    int segmap_w  = segment_ret->segmentmap_dims[0];
    int segmap_h  = segment_ret->segmentmap_dims[1];
    int segmap_c  = segment_ret->segmentmap_dims[2];
    int x, y, c;
    static unsigned int *imgbuf = NULL;
    float hair_color[4] = {0};
    float back_color[4] = {0};
    static float s_hsv_h = 0.0f;
    if (imgbuf == NULL)
    {
        imgbuf = (unsigned int *)malloc (segmap_w * segmap_h * sizeof(unsigned int));
    }
    s_hsv_h += 5.0f;
    if (s_hsv_h >= 360.0f)
        s_hsv_h = 0.0f;
    colormap_hsv (s_hsv_h / 360.0f, hair_color);
#if defined (RENDER_BY_BLEND)
    float lumi = (hair_color[0] * 0.299f + hair_color[1] * 0.587f + hair_color[2] * 0.114f);
    hair_color[3] = lumi;
#endif
    /* find the most confident class for each pixel. */
    for (y = 0; y < segmap_h; y ++)
    {
        for (x = 0; x < segmap_w; x ++)
        {
            int max_id;
            float conf_max = 0;
            for (c = 0; c < MAX_SEGMENT_CLASS; c ++)
            {
                float confidence = segmap[(y * segmap_w * segmap_c)+ (x * segmap_c) + c];
                if (c == 0 || confidence > conf_max)
                {
                    conf_max = confidence;
                    max_id = c;
                }
            }
            float *col = (max_id > 0) ? hair_color : back_color;
            unsigned char r = ((int)(col[0] * 255)) & 0xff;
            unsigned char g = ((int)(col[1] * 255)) & 0xff;
            unsigned char b = ((int)(col[2] * 255)) & 0xff;
            unsigned char a = ((int)(col[3] * 255)) & 0xff;
            imgbuf[y * segmap_w + x] = (a << 24) | (b << 16) | (g << 8) | (r);
        }
    }
    GLuint texid;
    glGenTextures (1, &texid );
    glBindTexture (GL_TEXTURE_2D, texid);
    glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glPixelStorei (GL_UNPACK_ALIGNMENT, 4);
    glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA,
        segmap_w, segmap_h, 0, GL_RGBA,
        GL_UNSIGNED_BYTE, imgbuf);
#if !defined (RENDER_BY_BLEND)
    draw_colored_hair (srctex, texid, ofstx, ofsty, draw_w, draw_h, 0, hair_color);
#else
    draw_2d_texture_ex (srctex, ofstx, ofsty, draw_w, draw_h, 0);
    unsigned int blend_add  [] = {GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE};
    draw_2d_texture_blendfunc (texid, ofstx, ofsty, draw_w, draw_h, 0, blend_add);
#endif
    glDeleteTextures (1, &texid);
    render_hsv_circle (ofstx + draw_w - 100, ofsty + 100, s_hsv_h);
}

4. 总结

本文介绍了AI技术的实时头发染色模型运用,首要应用于视频特效修正等场景。该模型用到了BuiltinOpResolver的AddCustom新方法。

本文正在参与 人工智能创作者扶持方案