「这是我参加2022初次更文应战的第4天,活动概况检查:2022初次更文应战」

本案例的意图是了解如何用Metal实现像素色彩转化滤镜,通过对像素色彩的不同读取方式获取到相应像素色彩,灰度图移除场景中除了黑白灰以外一切的色彩,让整个图画灰度化;


Demo

  • HarbethDemo地址
  • iDay每日共享文档地址

实操代码

// 转成灰度图滤镜
let filter = C7ColorConvert(with: .gray)
// 计划1:
let dest = BoxxIO.init(element: originImage, filter: filter)
ImageView.image = try? dest.output()
dest.filters.forEach {
  NSLog("%@", "\($0.parameterDescription)")
}
// 计划2:
ImageView.image = try? originImage.make(filter: filter)
// 计划3:
ImageView.image = originImage ->> filter

实现原理

  • 过滤器

这款滤镜采用并行计算编码器规划.compute(kernel: type.rawValue)

/// 色彩通道`RGB`位置转化
public struct C7ColorConvert: C7FilterProtocol {
    public enum ColorType: String, CaseIterable {
        case invert = "C7ColorInvert"
        case gray = "C7Color2Gray"
        case bgra = "C7Color2BGRA"
        case brga = "C7Color2BRGA"
        case gbra = "C7Color2GBRA"
        case grba = "C7Color2GRBA"
        case rbga = "C7Color2RBGA"
    }
    private let type: ColorType
    public var modifier: Modifier {
        return .compute(kernel: type.rawValue)
    }
    public init(with type: ColorType) {
        self.type = type
    }
}
  • 着色器

取出像素rgb值,然后根据对应像素色彩;灰度图则是取一切的色彩重量,将它们加权或均匀;

// 色彩反转,1 - rgb
kernel void C7ColorInvert(texture2d<half, access::write> outputTexture [[texture(0)]],
                          texture2d<half, access::read> inputTexture [[texture(1)]],
                          uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    const half4 outColor(1.0h - inColor.rgb, inColor.a);
    outputTexture.write(outColor, grid);
}
// 转灰度图
kernel void C7Color2Gray(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    const half3 kRec709Luma = half3(0.2126, 0.7152, 0.0722);
    const half gray = dot(inColor.rgb, kRec709Luma);
    const half4 outColor = half4(half3(gray), 1.0h);
    outputTexture.write(outColor, grid);
}
kernel void C7Color2BGRA(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    const half4 outColor(inColor.bgr, inColor.a);
    outputTexture.write(outColor, grid);
}
kernel void C7Color2BRGA(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    const half4 outColor(inColor.brg, inColor.a);
    outputTexture.write(outColor, grid);
}
kernel void C7Color2GBRA(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    const half4 outColor(inColor.gbr, inColor.a);
    outputTexture.write(outColor, grid);
}
kernel void C7Color2GRBA(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    const half4 outColor(inColor.grb, inColor.a);
    outputTexture.write(outColor, grid);
}
kernel void C7Color2RBGA(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    const half4 outColor(inColor.rbg, inColor.a);
    outputTexture.write(outColor, grid);
}
  • 权值法
const half3 kRec709Luma = half3(0.2126, 0.7152, 0.0722);
const half gray = dot(inColor.rgb, kRec709Luma);
const half4 outColor = half4(half3(gray), 1.0h);
  • 均匀值法
const float color = (inColor.r + inColor.g + inColor.b) / 3.0;
const half4 outColor = half4(color, color, color, 1.0h);

总结:
一般因为人眼对不同色彩的敏感度不一样,所以三种色彩值的权重不一样,一般来说绿色最高,赤色其次,蓝色最低,最合理的取值分别为Wr = 30%,Wg = 59%,Wb = 11%,所以权值法相对作用更好一点。

对照图

invert bgra brga
Metal每日分享,颜色转换滤镜效果
Metal每日分享,颜色转换滤镜效果
Metal每日分享,颜色转换滤镜效果
gbra grba rbga
Metal每日分享,颜色转换滤镜效果
Metal每日分享,颜色转换滤镜效果
Metal每日分享,颜色转换滤镜效果

Harbeth功用清单

  • 支撑ios体系和macOS体系
  • 支撑运算符函数式操作
  • 支撑多种形式数据源 UIImage, CIImage, CGImage, CMSampleBuffer, CVPixelBuffer.
  • 支撑快速规划滤镜
  • 支撑合并多种滤镜作用
  • 支撑输出源的快速扩展
  • 支撑相机采集特效
  • 支撑视频增加滤镜特效
  • 支撑矩阵卷积
  • 支撑运用体系 MetalPerformanceShaders.
  • 支撑兼容 CoreImage.
  • 滤镜部分大致分为以下几个模块:
    • Blend:图画融合技术
    • Blur:模糊作用
    • Pixel:图画的基本像素色彩处理
    • Effect:作用处理
    • Lookup:查找表过滤器
    • Matrix: 矩阵卷积滤波器
    • Shape:图画形状大小相关
    • Visual: 视觉动态特效
    • MPS: 体系 MetalPerformanceShaders.

最后

  • 关于色彩转化滤镜介绍与规划到此为止吧。
  • 慢慢再弥补其他相关滤镜,喜欢就给我点个星吧。
  • 滤镜Demo地址,现在包含100+种滤镜,同时也支撑CoreImage混合运用。
  • 再附上一个开发加速库KJCategoriesDemo地址
  • 再附上一个网络根底库RxNetworksDemo地址
  • 喜欢的老板们可以点个星,谢谢各位老板!!!

✌️.