8.Flink实时项目之CEP计算访客跳出

1.访客跳出明细介绍

首先要识别哪些是跳出行为,要把这些跳出的访客最后一个访问的页面识别出来。那么就要抓住几个特征:

该页面是用户近期访问的第一个页面,这个可以通过该页面是否有上龚俊一个页面(lastapple苹果官网_page_id)来判断,如果这javascript个表示为空,就说明这是这个访java培训机构客这次访问的第一个页面。

首次访问之后很长一段java模拟器时间json格式怎么打开(自己设定),用户没继续再有其他页面的访问

这第一个特征的识别很简单,保留 last_page_id 为空的就可以了。但是第二个访问json解析的判断,其实有点麻烦,首先这不是用一条数据就能得出结论的,需要组合判断,要用一java面试题条存测试抑郁症的20道题在的数据和不存在测试抑郁症的20道题的数据进行组合判断。而且要通过一个不存在的数据求得一测试抑郁程度的问卷条存在的数据。更测试工程师麻烦的他并不是永APP远不存在,而是json格式怎么打开在一定时间范java环境变量配置围内不存在。那么如何识别有一定失效的组合行java模拟器为呢?

最简单的办法就是 Fjson解析失败link 自带的 CEP 技术。这个 CEP 非常java面试题适合通过多条数据组合来识别某个事件。

用户跳出事件,本质上就是一个条件事件加一个超时事件的组合。

  • 流程图

8.Flink实时项目之CEP计算访客跳出

2.代码实现

创建任务类UserJumpDetailjavaeeApp.japplicationava,从kafka读取页面日志

import com.zhangbao.gmall.realtime.utils.MyKafkaUtil;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
/**
 * @author zhangbao
 * @date 2021/10/17 10:38
 * @desc
 */
public class UserJumpDetailApp {
    public static void main(String[] args) {
        //webui模式,需要添加pom依赖
        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());
//        StreamExecutionEnvironment env1 = StreamExecutionEnvironment.createLocalEnvironment();
        //设置并行度
        env.setParallelism(4);
        //设置检查点
//        env.enableCheckpointing(5000, CheckpointingMode.EXACTLY_ONCE);
//        env.getCheckpointConfig().setCheckpointTimeout(60000);
//        env.setStateBackend(new FsStateBackend("hdfs://hadoop101:9000/gmall/flink/checkpoint/userJumpDetail"));
//        //指定哪个用户读取hdfs文件
//        System.setProperty("HADOOP_USER_NAME","zhangbao");
        //从kafka读取数据源
        String sourceTopic = "dwd_page_log";
        String group = "user_jump_detail_app_group";
        String sinkTopic = "dwm_user_jump_detail";
        FlinkKafkaConsumer<String> kafkaSource = MyKafkaUtil.getKafkaSource(sourceTopic, group);
        DataStreamSource<String> kafkaDs = env.addSource(kafkaSource);
        kafkaDs.print("user jump detail >>>");
        try {
            env.execute("user jump detail task");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

3. flink CEP编程

官方文档:njson文件是干什么的ijava环境变量配置ghtlies.apache.org/flink/flink…

处理流程

1.从kjava是什么意思af工龄差一年工资差多少kajsonAPP取日志数据

2.设定时间语义为事件时间并指定事件时间字段ts

3.按照mid分组

4.配置CEP表达式

  • 1.第一次访问的页面:last_page_id == null

  • 2.第一Java次访问的页面在10秒内,java是什么意思没有进行其他操作,没有访问其他页面

5.根据表达式筛选流

6.提取命中的数据

  • 设定超json解析时时间标识 timGoeoutTag
  • flatSele测试用例ct 方法中,实现 PatternFlajava培训tjava怎么读TimeoutFunction 中的 timeout 方法。
  • 所有 out.collect 的数据都被打上java培训了超时标记
  • 本身的 flatS测试egooglelect 方法因为不需要未超时的数据所以不接受数据。
  • 通过 SideOutput 侧输出流输出appearance超时数据

7.将跳出数据写回到kafka

package com.zhangbao.gmall.realtime.app.dwm;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.zhangbao.gmall.realtime.utils.MyKafkaUtil;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkGenerator;
import org.apache.flink.api.common.eventtime.WatermarkGeneratorSupplier;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.cep.CEP;
import org.apache.flink.cep.PatternFlatSelectFunction;
import org.apache.flink.cep.PatternFlatTimeoutFunction;
import org.apache.flink.cep.PatternStream;
import org.apache.flink.cep.pattern.Pattern;
import org.apache.flink.cep.pattern.conditions.SimpleCondition;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;
import java.util.List;
import java.util.Map;
/**
 * @author zhangbao
 * @date 2021/10/17 10:38
 * @desc
 */
public class UserJumpDetailApp {
    public static void main(String[] args) {
        //webui模式,需要添加pom依赖
        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());
//        StreamExecutionEnvironment env1 = StreamExecutionEnvironment.createLocalEnvironment();
        //设置并行度
        env.setParallelism(4);
        //设置检查点
//        env.enableCheckpointing(5000, CheckpointingMode.EXACTLY_ONCE);
//        env.getCheckpointConfig().setCheckpointTimeout(60000);
//        env.setStateBackend(new FsStateBackend("hdfs://hadoop101:9000/gmall/flink/checkpoint/userJumpDetail"));
//        //指定哪个用户读取hdfs文件
//        System.setProperty("HADOOP_USER_NAME","zhangbao");
        //从kafka读取数据源
        String sourceTopic = "dwd_page_log";
        String group = "user_jump_detail_app_group";
        String sinkTopic = "dwm_user_jump_detail";
        FlinkKafkaConsumer<String> kafkaSource = MyKafkaUtil.getKafkaSource(sourceTopic, group);
        DataStreamSource<String> jsonStrDs = env.addSource(kafkaSource);
        /*//测试数据
        DataStream<String> jsonStrDs = env
         .fromElements(
                "{\"common\":{\"mid\":\"101\"},\"page\":{\"page_id\":\"home\"},\"ts\":10000} ",
                "{\"common\":{\"mid\":\"102\"},\"page\":{\"page_id\":\"home\"},\"ts\":12000}",
                "{\"common\":{\"mid\":\"102\"},\"page\":{\"page_id\":\"good_list\",\"last_page_id\":" +
                        "\"home\"},\"ts\":15000} ",
                "{\"common\":{\"mid\":\"102\"},\"page\":{\"page_id\":\"good_list\",\"last_page_id\":" +
                        "\"detail\"},\"ts\":30000} "
        );
        dataStream.print("in json:");*/
        //对读取到的数据进行结构转换
        SingleOutputStreamOperator<JSONObject> jsonObjDs = jsonStrDs.map(jsonStr -> JSON.parseObject(jsonStr));
//        jsonStrDs.print("user jump detail >>>");
        //从flink1.12开始,时间语义默认是事件时间,不需要额外指定,如果是之前的版本,则要按以下方式指定事件时间语义
        //env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        //指定事件时间字段
        SingleOutputStreamOperator<JSONObject> jsonObjWithTSDs = jsonObjDs.assignTimestampsAndWatermarks(
                WatermarkStrategy.<JSONObject>forMonotonousTimestamps().withTimestampAssigner(
                        new SerializableTimestampAssigner<JSONObject>() {
                            @Override
                            public long extractTimestamp(JSONObject jsonObject, long l) {
                                return jsonObject.getLong("ts");
                            }
                        }
        ));
        //按照mid分组
        KeyedStream<JSONObject, String> ketByDs = jsonObjWithTSDs.keyBy(
                jsonObject -> jsonObject.getJSONObject("common").getString("mid")
        );
        /**
         * flink CEP表达式
         * 跳出规则,满足两个条件:
         *  1.第一次访问的页面:last_page_id == null
         *  2.第一次访问的页面在10秒内,没有进行其他操作,没有访问其他页面
         */
        Pattern<JSONObject, JSONObject> pattern = Pattern.<JSONObject>begin("first")
                .where( // 1.第一次访问的页面:last_page_id == null
                    new SimpleCondition<JSONObject>() {
                        @Override
                        public boolean filter(JSONObject jsonObject) throws Exception {
                            String lastPageId = jsonObject.getJSONObject("page").getString("last_page_id");
                            System.out.println("first page >>> "+lastPageId);
                            if (lastPageId == null || lastPageId.length() == 0) {
                                return true;
                            }
                            return false;
                        }
                    }
                ).next("next")
                .where( //2.第一次访问的页面在10秒内,没有进行其他操作,没有访问其他页面
                        new SimpleCondition<JSONObject>() {
                            @Override
                            public boolean filter(JSONObject jsonObject) throws Exception {
                                String pageId = jsonObject.getJSONObject("page").getString("page_id");
                                System.out.println("next page >>> "+pageId);
                                if(pageId != null && pageId.length()>0){
                                    return true;
                                }
                                return false;
                            }
                        }
                //时间限制模式,10S
                ).within(Time.milliseconds(10000));
        //将cep表达式运用到流中,筛选数据
        PatternStream<JSONObject> patternStream = CEP.pattern(ketByDs, pattern);
        //从筛选的数据中再提取数据超时数据,放到侧输出流中
        OutputTag<String> timeOutTag = new OutputTag<String>("timeOut"){};
        SingleOutputStreamOperator<Object> outputStreamDS = patternStream.flatSelect(
                timeOutTag,
                //获取超时数据
                new PatternFlatTimeoutFunction<JSONObject, String>() {
                    @Override
                    public void timeout(Map<String, List<JSONObject>> map, long l, Collector<String> collector) throws Exception {
                        List<JSONObject> first = map.get("first");
                        for (JSONObject jsonObject : first) {
                            System.out.println("time out date >>> "+jsonObject.toJSONString());
                            //所有 out.collect 的数据都被打上了超时标记
                            collector.collect(jsonObject.toJSONString());
                        }
                    }
                },
                //获取未超时数据
                new PatternFlatSelectFunction<JSONObject, Object>() {
                    @Override
                    public void flatSelect(Map<String, List<JSONObject>> map, Collector<Object> collector) throws Exception {
                        //不超时的数据不提取,所以这里不做操作
                    }
                }
        );
        //获取侧输出流的超时数据
        DataStream<String> timeOutDs = outputStreamDS.getSideOutput(timeOutTag);
        timeOutDs.print("jump >>> ");
        //将跳出数据写回到kafka
        timeOutDs.addSink(MyKafkaUtil.getKafkaSink(sinkTopic));
        try {
            env.execute("user jump detail task");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

测试数据

将从kafkJavaa读取数据的方式切换成固定数据内容,如下:

//测试数据
        DataStream<String> jsonStrDs = env
         .fromElements(
                "{\"common\":{\"mid\":\"101\"},\"page\":{\"page_id\":\"home\"},\"ts\":10000} ",
                "{\"common\":{\"mid\":\"102\"},\"page\":{\"page_id\":\"home\"},\"ts\":12000}",
                "{\"common\":{\"mid\":\"102\"},\"page\":{\"page_id\":\"good_list\",\"last_page_id\":" +
                        "\"home\"},\"ts\":15000} ",
                "{\"common\":{\"mid\":\"102\"},\"page\":{\"page_id\":\"good_list\",\"last_page_id\":" +
                        "\"detail\"},\"ts\":30000} "
        );
        dataStream.print("in json:");

然后从dwm_user_jump_detail主题消费数据java怎么读

./kafka-console-consuappearmer.sh --bootstrap-sejava培训rver hadoop101:9092,hadojava培训机构op102:9092,hadoop103:9092 --topjavascriptic dwm_user_java怎么读jump_de宫颈癌tail

发表评论

提供最优质的资源集合

立即查看 了解详情